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A new general-relativistic theory of cosmology, the dynamical variables of which
are those of Hubble’s, namely distances and redshifts, is presented. The theory
describes the universe as having a three-phase evolution with a decelerating
expansion followed by a constant and an accelerating expansion, and it predicts
that the universe is now in the latter phase. The theory is actually a generalization
of Hubble’s law taking gravity into account by means of Einstein’s theory of
general relativity. The equations obtained for the universe expansion are elegant
and very simple. It is shown, assuming V0 5 0.24, that the time at which the
universe goes over from a decelerating to an accelerating expansion, i.e., the
constant expansion phase, occurs at 0.03 t from the big bang, where t is the
Hubble time in vacuum. Also, at that time the cosmic radiation temperature was
11 K. Recent observations of distant supernovae imply, in defiance of expectations,
that the universe’s growth is accelerating, contrary to what has always been
assumed, that the expansion is slowing down due to gravity. Our theory confirms
these recent experimental results by showing that the universe now is definitely
in a stage of accelerating expansion.

1. INTRODUCTION

In this paper we present a new theory of cosmology that is based on
Einstein’s general relativity theory. The theory is formulated in terms of
directly measured quantities, i.e., distances, redshifts, and the matter density
of the universe.

The general-relativistic theory of cosmology started in 1922 with the
remarkable work of Friedmann [1], who solved the Einstein gravitational
field equations and found that they admit nonstatic cosmological solutions
presenting an expanding universe. Einstein, believing that the universe should
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be static and unchanged forever, suggested a modification to his gravitational
field equations by adding to them the so-called cosmological term which can
stop the expansion.

Soon after that Hubble [2] found experimentally that the distant galaxies
are receding from us, and that the farther the galaxy, the bigger its velocity.
In simple words, the universe is indeed expanding according to a simple
physical law that gives the relationship between the receding velocity and
the distance,

v 5 H0R (1.1)

Equation (1.1) is usually referred to as the Hubble law, and H0 is called the
Hubble constant. It is tacitly assumed that the velocity is proportional to the
actual measurement of the redshift z of the receding objects by using the
nonrelativistic relation z 5 v/c, where c is the speed of light in vacuum.

The Hubble law does not resemble standard dynamical physical laws
that are familiar in physics. Rather, it is a cosmological equation of state of
the kind one has in thermodynamics such as the one that relates the pressure,
volume, and temperature, pV 5 RT (see e.g., ref. 3). It is this Hubble equation
of state that will be extended so as to include gravity by use of the full
Einstein theory of general relativity. The obtained results will be very simple,
expressing distances in terms of redshifts; depending on the value of V 5
r/rc , we will have accelerating, constant, and decelerating expansions corres-
ponding to V , 1, V 5 1, and V . 1, respectively. But the last two cases
will be shown to be excluded on physical evidence, although the universe had
decelerating and constant expansions before it reached its present accelerating
expansion stage. As is well known the standard FRW cosmological theory
does not deal directly with Hubble’s measured quantities, the distances and
redshifts. Accordingly, the present theory can be compared directly with
important recent observations made by astronomers which defy expectations.

In Sections 2 and 3 we review the standard Friedmann and Lemaître
models. In Section 4 we mention some weak points in those theories. In
Section 5 we present our cosmological theory written in terms of distances
and redshifts, whereas Section 6 is devoted to the concluding remarks.

2. REVIEW OF THE FRIEDMANN MODELS

Before presenting our theory, and in order to fix the notation, we very
briefly review the existing theory [4–7].3 In the four-dimensional curved
space-time describing the universe, our spatial three-dimensional space is
assumed to be isotropic and homogeneous. Comoving coordinates, in which

3 Our notation is similar to that used in ref. 7.
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g00 5 1 and g0k 5 0, are employed [8, 9]. Here and throughout this paper
lowercase Latin indices take the values 1, 2, 3, Greek indices take the values
0, 1, 2, 3, and the signature will be (1 2 2 2). The four-dimensional space-
time is split into 1 % 3 parts, and the line element is written as

ds2 5 dt2 2 dl2, dl2 5 (3)gkl dxk dxl 5 2gkl dxk dxl (2.1)

and the 3 3 3 tensor (3)gkl [ 2gkl describes the geometry of the three-
dimensional space at a given instant of time. In the above equations the speed
of light c is taken as unity.

Because of the isotropy and homogeneity of the three-geometry, it fol-
lows that the curvature tensor must have the form

(3)Rmnsk 5 K[(3)gms
(3)gnk 2 (3)gmk

(3)gns] (2.2)

where K is a constant, the curvature of the three-dimensional space, which
is related to the Ricci scalar by (3)R 5 26K.4 By simple geometrical arguments
one then finds that

dl2 5 (1 2 r 2/R2)21 dr 2 1 r 2(du2 1 sin2u df2) (2.3)

where r , R. Furthermore, the curvature tensor corresponding to the metric
(2.3) satisfies Eq. (2.2) with K 5 1/R2. In the spherical coordinates (t, r, u,
f) we thus have

g11 5 2(1 2 r 2/R2)21 (2.4)

R is called the radius of the curvature (or the expansion parameter) and its
value is determined by the Einstein field equations.

One then has three cases: (1) a universe with positive curvature, for
which K 5 1/R2; (2) a universe with negative curvature, K 5 21/R2; and
(3) a universe with zero curvature, K 5 0. The g11 component for the negative-
curvature universe is given by

g11 5 2(1 1 r 2/R2)21 (2.5)

where r , R. For the zero-curvature universe one lets R → `.
Although general relativity theory asserts that all coordinate systems

are equally valid, in this theory one has to change variables in order to get
the “right” solutions of the Einstein field equations according to the type of
the universe. Accordingly, one makes the substitution r 5 R sin x for the
positive-curvature universe and r 5 R sinh x for the negative-curvature
universe. In addition, the timelike coordinate is also changed into another
one h by the transformation dt 5 R dh. The corresponding line elements
then become

4 For more details on the geometric meaning see ref. 10.
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ds2 5 R2(h)[dh2 2 dx2 2 sin2x(du2 1 sin2u df2)] (2.6a)

for the positive-curvature universe,

ds2 5 R2(h)[dh2 2 dx2 2 sinh2x(du2 1 sinh2u df2)] (2.6b)

for the negative-curvature universe, and

ds2 5 R2(h)[dh2 2 dr 2 2 r 2(du2 1 sin2u df2)] (2.6c)

for the flat three-dimensional universe. In the sequel, we will see that the
timelike coordinate in our theory will take one more different form.

The Einstein field equations are then employed in order to determine
the expansion parameter R(h). In fact only one field equation is needed,

R0
0 2 1–2 d0

0R 1 Ld0
0 5 8pGT 0

0 (2.7)

where L is the cosmological constant, and c is taken as unity. In the Friedmann
models one takes L 5 0, and in the comoving coordinates used one easily
finds that T 0

0 5 r, the mass density. While this choice of the energy-momen-
tum tensor is acceptable in standard general relativity and in Newtonian
gravity, we will argue in the sequel that it is not so for cosmology. At any
rate, using r(t) 5 M/2p2R3, where M is the “mass” and 2p2R3 is the “volume”
of the universe, one obtains

3[(dR/dt)2 1 1]/R2 5 4GM/pR3 1 L (2.8a)

or, in terms of h along with taking L 5 0,

3[(dR/dh)2 1 R2]/R 5 4GM/p (2.9a)

The solution of this equation is

R 5 *R(1 2 cos h) (2.10a)

where *R 5 2GM/3p, and from dt 5 R dh we obtain

t 5 *R (h 2 sin h) (2.11a)

Equations (2.10a) and (2.11a) are those of a cycloid, and give a full representa-
tion for the expansion parameter of the universe. Figure 1 shows a plot of
R as a function of t. At t 5 0, 62p*R, 64p*R, . . . , etc., R(t) vanishes; that
is, the universe contracts to a point. Since the density will become very large
when this is about to happen, our approximate expression for the energy-
momentum tensor will fail. We should also keep in mind that the classical
Einstein equation becomes inapplicable at very high densities. It is therefore
not clear exactly what happens at the singular points of Fig. 1, and we do
not know whether the universe actually has the periodic behavior suggested
by this figure.
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Fig. 1. Radius of curvature of the positive-curvature Friedmann universe as a function of time.
The curve is a cycloid.

Similarly, one obtains for the negative-curvature universe the analogs
to Eqs. (2.8a) and (2.9a),

3[(dR/dt)2 2 1]/R2 5 4GM/pR3 1 L (2.8b)

3[(dR/dh)2 2 R2]/R 5 4GM/p (2.9b)

the solution of which is given by

R 5 *R(cosh h 2 h) (2.10b)

t 5 *R(sinh h 2 h) (2.11b)

Figure 2 shows R as a function of t. The universe begins with a big bang
and continues to expand forever. As t → `, the universe gradually becomes
flat. Again, the state near the singularity at t 5 0 is not adequately described
by our equations.

Finally, for the universe with a flat three-dimensional space the Einstein
field equations yield the analogs to Eqs. (2.8a) and (2.9a),

3(dR/dt)2/R2 5 4GM/pR3 1 L (2.8c)

3(dR/dh)8/R 5 4GM/p (2.9c)

As a function of t, the solution is
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Fig. 2. Radius of curvature of the negative-curvature Friedmann universe as a function of time.

R 5 (3GM/p)1/3t2/3 (2.10c)

This function is plotted in Fig. 3. As t → `, the four-geometry tends to
become flat.

3. LEMAÎTRE MODELS

An extension of the Friedmann models was carried out by Lemaître,
who considered universes with zero energy-momentum but with a nonzero
cosmological constant. While these models are of interest mathematically,
they have little, if any, relation to the physical universe because we know
that there is baryonic matter. The behavior of the universe in this model will
be determined by the cosmological term; this term has the same effect as a
uniform mass density reff 5 2L/4pG, which is constant in space and time.
A positive value of L corresponds to a negative effective mass density
(repulsion), and a negative value of L corresponds to a positive mass density
(attraction). Hence, we expect that in a universe with a positive value of L,
the expansion will tend to accelerate; whereas in a universe with negative
value of L, the expansion will slow down, stop, and reverse.

The equations of motion for R(t) have been derived in Section 2, but
here it will be assumed that L Þ 0, whereas the energy-momentum tensor
appearing in Eq. (2.7) is zero. For the positive-curvature universe one obtains
the analog to Eq. (2.8a),
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Fig. 3. Radius of curvature of the flat Friedmann universe as a function of time.

3[(dR/dt)2 1 1]/R2 5 L (3.1a)

From Eq. (3.1a) one immediately concludes that 21 1 LR2/3 cannot be
negative. This implies that L . 0, and that the value of R can never be less
than (3/L)1/2, i.e., the radius of curvature cannot be zero, which excludes the
possibility of a big bang.

The integration of Eq. (3.1a) yields

R(t) 5 (3/L)1/2 cosh[(L/3)1/2t] (3.2a)

where t was taken zero when R has its minimum value. Figure 4 curve (a),
shows a plot of R as a function of t. As is seen, for t . 0 the universe
expands monotonically, and as t increases, R increases, too, and the universe
becomes flat.

Similarly, one obtains for the negative-curvature universe the analog to
Eq. (3.1a),

3[(dR/dt)2 2 1]/R2 5 L (3.1b)

the integration of which gives

R(t) 5 (3/L)1/2 sinh[(L/3)1/2t] (3.2b)

for L . 0, and
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Fig. 4. Radius of curvature of the empty Lemaitre universes as a function of time. (a) Positive-
curvature model, L . 0. (b) Negative-curvature model, L . 0. (c) Negative-curvature model,
L , 0. (d) Flat model, L . 0.

R(t) 5 (3/2L)1/2 sinh [(2L/3)1/2t] (3.2c)

for L , 0. These functions are plotted in Fig. 4, curves (b) and (c), respectively.
Note that both universes begin with a big bang at t 5 0. The first of these
curves expands monotonically, whereas the second one oscillates. In our
actual universe, the mass density near the singularity at t 5 0 was extremely
large, and hence this model cannot be used to describe its behavior near
this time.

Finally, for the universe with a flat three-dimensional space the Einstein
field equations yield the analog to Eq. (3.1a),

3(dR/dt)2/R2 5 L (3.1c)

This equation has meaning only for L . 0, and it has the solution

R(t) 5 R(0) exp[(L/3)1/2t] (3.2d)

This universe expands exponentially. This model, described by Eq. (3.2d),
is usually called the de Sitter universe.

4. REMARKS AND CRITIQUE OF THE STANDARD THEORY

To conclude the discussion on the Friedmann and Lemaître universes, we
briefly discuss the case in which both the matter density and the cosmological
constant are not zero. Note that exact solutions of the differential equations
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describing the expansion of the universe in that case, given by Eqs. (2.8),
are not known. These general models can be thought of as a combination of
the Friedmann and Lemaître models.

Consider a universe that begins with a big bang. At an early time, the
universe must have been very dense, and we can neglect the cosmological
term. Hence, we have approximately a Friedmann universe. As the universe
expands and the mass density decreases, the cosmological term will become
more important. In the Friedmann models of zero and negative curvature,
the universe expands monotonically and the decrease in mass density is
monotonic, too. The cosmological term will ultimately dominate the behavior
of the universe, and it gradually turns into an empty Lemâtre universe with
zero or negative curvature. In the case of negative curvature with L , 0,
the expansion will stop at some later time, reverse, and finally end up in a
recontracting universe of negative curvature.

In the case of a Friedmann universe with a positive curvature, the mass
density reaches a minimum when the radius of curvature is at its maximum.
Hence, the cosmological term will dominate the behavior of the universe
only if it is sufficiently large compared with the minimum mass density. The
critical value of L is given by LE 5 (p/2GM )2. If L is larger than LE ,
then the Friedmann universe with positive curvature gradually turns into an
expanding Lemaître universe with positive curvature (Fig. 5). In the case

Fig. 5. Radius of curvature of a nonempty Lemaître universe, with L . LE.
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L 5 LE , the transition is never completed and the expansion stops at a
constant value of R 5 1/L1/2

E . This static universe is called the Einstein
universe. The universe at this value of R, however, is not stable. Any perturba-
tion in R leads either to monotonic expansion (toward an empty Lemaître
model) or to contraction (toward a contracting Friedmann universe).

In the final analysis, it follows that the expansion of the universe is
determined by the so-called cosmological parameters. These can be taken as
the mass density r, the Hubble constant H, and the deceleration parameter
q. In the following we give a brief review of these parameters and the
relationship between them. In the rest of the paper we will concentrate on the
theory with dynamical variables that are actually measured by astronomers:
distances, redshifts, and the mass density.

Equations (2.8) can be written as

3(H2 1 k/R2) 5 8pGr 1 L (4.1)

where k 5 1, k 5 0, or k 5 21, for the cases of positive, zero, or negative
curvature, respectively. Using Eq. (4.1) and V 5 r/rc , where rc 5
3H 2

0 /8pG, one obtains

V 5 1 1 k/H 2R2 2 L/3H 2 (4.2)

It follows from these equations that the curvature of the universe is determined
by H, r, and L, or equivalently, H, V , and L:

V . 1 2 L/3H 2 (4.3a)

for positive curvature,

V , 1 2 L/3H 2 (4.3b)

for negative curvature, and

V 5 1 2 L/3H 2 (4.3c)

for zero curvature.
The deceleration parameter is defined as

q [ 2[1 1 (1/H 2) dH/dt] (4.4)

and it can be shown that

q 5 V/2 2 L/3H 2 (4.5)

Using Eq. (4.5), we can eliminate L from Eqs. (4.3) and obtain

3V/2 . 1 1 q (4.6a)

for positive curvature,
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3V/2 , 1 1 q (4.6b)

for negative curvature, and

3V/2 5 1 1 q (4.6c)

for zero curvature.
It is worthwhile mentioning some weak points in the Friedmann theory.

One of the assumptions is that the type of the universe is determined by V 5
r/rc , where rc 5 3H2

0 /8pG, which requires that the sign of (V 2 1) must
not change throughout the evolution of the universe so as to change the kind
of the universe from one to another. That means that in this theory the
universe has only one kind of curvature throughout its evolution and cannot
go from one curvature to another. It is not obvious, however, that this is
indeed a valid assumption theoretically or experimentally. In other words,
the universe has been and will be in only one form of expansion. As will be
shown in the sequel, the universe has actually three phases of expansion,
and it does go from one to the second and then to the third phase.

In the combined Friedmann–Lemaître theory discussed above in which
both the matter density and the cosmological constant are not zero, neverthe-
less, the theory does permit the change of sign of the decelerating parameter
q, as can be seen from Fig. 5. There exist no equations, however, that describe
this kind of transfer from one type of universe to another.

Finally, one can also argue that astronomers do not measure the radius
of curvature of the universe. In fact, one may ask what is the meaning of
such a notion for the open universe?

5. COSMOLOGICAL THEORY IN TERMS OF DISTANCE
AND REDSHIFT

A new outlook on the universe’ expansion can be achieved and is
presented here. The new theory has the following features: (1) It gives a
direct relationship between distances and redshifts. (2) It is fully general
relativistic. (3) It includes two universal constants, the speed of light in
vacuum c and the Hubble time in the absence of gravity t (might also be
called the Hubble time in vacuum). (4) The redshift parameter z is taken as
the timelike coordinate. (5) The energy-momentum tensor is represented
differently by including in it a term which is equivalent to the cosmological
constant. And (6) it predicts that the universe has three phases of expansion:
decelerating, constant, and accelerating, but it is now in the stage of accelerat-
ing expansion phase after having gone through the other two phases.

Our starting point is Hubble’s cosmological equation of state, Eq. (1.1).
One can keep the velocity v in Eq. (1.1) or replace it with the redshift
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parameter z by means of z 5 v/c. Since R 5 (x1, x2, x3), the square of Eq.
(1.1) then yields

c2H22
0 z2 2 (x2

1 1 x2
2 1 x2

3) 5 0 (5.1)

Our aim is to write our equations in an invariant way so as to enable us to
extend them to curved space. Equation (5.1) is not invariant since H21

0 is the
Hubble time at present. At the limit of zero gravity, Eq. (5.1) will have the form

c2t2z2 2 (x2
1 1 x2

2 1 x2
3) 5 0 (5.2)

where t is Hubble’s time in vacuum, which is a universal constant, the
numerical value of which will be determined in the sequel by relating it to
H21

0 at different situations. Equation (5.2) provides the basis of a cosmological
special relativity and has been investigated extensively [11–16].

In order to make Eq. (5.2) adaptable to curved space we write it in a
differential form:

c2t2 dz2 2 (dx2
1 1 dx2

2 1 dx2
3) 5 0 (5.3)

or, in a covariant form in flat space,

ds2 5 hmn dxm dxn 5 0 (5.4a)

where hmn is the ordinary Minkowskian metric, and our coordinates are (x0,
x1, x2, x3) 5 (ctz, x1, x2, x3). Equation (5.4a) expresses the null condition,
familiar from light propagation in space, but here it expresses the universe
expansion in space. The generalization of Eq. (5.4a) to a covariant form in
curved space can immediately be made by replacing the Minkowskian metric
hmn by the curved Riemannian geometrical metric gmn,

ds2 5 gmn dxm dxn 5 0 (5.4b)

obtained from solving the Einstein field equations.
Because of the spherical symmetry nature of the universe, the metric

we seek is of the form [8]

ds2 5 c2t2 dz2 2 el dr 2 2 r 2(du2 1 sin2u df2) (5.5)

where comoving coordinates, as in the Friedmann theory, are used and l is
a function of the radial distance r. The metric (5.5) is static and solves the
Einstein field equation (2.7). When looking for static solutions, Eq. (2.7) can
also be written as

e2l(l8/r 2 1/r 2) 1 1/r 2 5 8pGT 0
0 (5.6)

when L is taken zero, and where a prime denotes differentiation with respect
to r.
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In general relativity theory one takes T 0
0 5 r. In Newtonian gravity one

has the Poisson equation ¹2 f 5 4pGr. At points where r 5 0 one solves
the vacuum Einstein field equations and the Laplace equation ¹2f 5 0 in
Newtonian gravity. In both theories a null (zero) solution is allowed as a
trivial case. In cosmology, however, there exists no situation at which r can
be zero because the universe is filled with matter. In order to be able to have
zero on the right-hand side of Eq. (5.6) we take T 0

0 not as equal to r, but to
r 2 rc , where rc is chosen by us now as a constant given by rc 5 3/8pGt2.

The introduction of rc in the energy-momentum tensor might be regarded
as adding a cosmological constant to the Einstein field equations. But this
is not exactly so, since the addition of 2rc to T 0

0 means also fixing the
numerical value of the cosmological constant and is no longer a variable to
be determined by experiment. At any rate our reasons are philosophically
different from the standard point of view, and this approach has been presented
and used in earlier work [17].

The solution of Eq. (5.6) with T 0
0 5 r 2 rc is given by

e2l 5 1 2 (V 2 1)r 2/c2t2 (5.7)

where V 5 r/rc. Accordingly, if V . 1, we have grr 5 2(1 2 r 2/R2)21, where

R2 5 c2t2/(V 2 1) (5.8a)

exactly equals g11 given by Eq. (2.4) for the positive-curvature Friedmann
universe that is obtained in the standard theory by purely geometrical manipu-
lations (see Section 2). If V , 1, we can write grr 5 2(1 1 r 2/R2)21 with

R2 5 c2t2/(1 2 V) (5.8b)

which is equal to g11 given by Eq. (2.5) for the negative-curvature Friedmann
universe. In the above equations r , R.

In Fig. 6 a plot of R as a function of V , according to Eqs. (5.8), is
given. One can interpret R as the boundary of the universe within which
matter can exist, although it is not necessarily that the matter fills up all the
space bounded by R.

Moreover, we know that the Einstein field equations for these cases are
given by Eqs. (2.8), which, in our new notation, have the form

[(dR/dz)2 1 c2t2]/R2 5 (V 2 1) (5.9a)

[(dR/dz)2 2 c2t2]/R2 5 (V 2 1) (5.9b)

As is seen from these equations, if one neglects the first term in the square
brackets with respect to the second ones, R2 will be exactly reduced to their
values given by Eqs. (5.9).
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Fig. 6. A plot of R as a function of V according to Eqs. (5.8). R is the boundary of the universe
within which matter can exist, although it is not necessarily that the matter fills up all the
space bounded by R.

The expansion of the universe can now be determined from the null
condition ds 5 0, Eq. (5.4b), using the metric (5.5). Since the expansion is
radial, one has du 5 df 5 0, and the equation obtained is

dr/dz 5 ct[1 1 (1 2 V)r 2/c2t2]1/2 (5.10)

The second term in the square bracket of Eq. (5.10) represents the
deviation from constant expansion due to gravity. For without this term, Eq.
(5.10) reduces to dr/dz 5 ct or dr/dv 5 t, thus r 5 tv 1 const. The constant
can be taken zero if one assumes, as usual, that at r 5 0 the velocity should
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also vanish. Accordingly we have r 5 tv or v 5 t21r. When V 5 1, namely
when r 5 rc , we have a constant expansion.

The equation of motion (5.10) can be integrated exactly by the
substitutions

sin x 5 ar/ct; V . 1 (5.11a)

sinh x 5 br/ct; V , 1 (5.11b)

where

a 5 (V 2 1)1/2, b 5 (1 2 V)1/2 (5.12)

For the V . 1 case a straightforward calculation using Eq. (5.11a) gives

dr 5 (ct/a) cos x dx (5.13)

and the equation of the universe expansion (5.10) yields

dx 5 a dz (5.14a)

The integration of this equation gives

x 5 az 1 const (5.15a)

The constant can be determined using Eq. (5.11a). At x 5 0, we have r 5
0 and z 5 0, thus

x 5 az (5.16a)

or, in terms of the distance, using (5.11a) again,

r(z) 5 (ct/a) sin az; a 5 (V 2 1)1/2 (5.17a)

This is obviously a decelerating expansion.
For V , 1, using Eq. (5.11b), a similar calculation yields for the universe

expansion (5.10)

dx 5 b dz (5.14b)

thus

x 5 bz 1 const (5.15b)

Using the same initial conditions as above then gives

x 5 bz (5.16b)

and in terms of distances,

r(z) 5 (ct/b) sinh bz; b 5 (1 2 V)1/2 (5.17b)

This is now an accelerating expansion.
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For V 5 1 we have, from Eq. (5.10),

d 2r/dz2 5 0 (5.14c)

The solution is, of course,

r(z) 5 ctz (5.17c)

This is a constant expansion.
It will be noted that the last solution can also be obtained directly from

the previous two for V . 1 and V , 1 by going to the limit z → 0, using
L’Hôspital’s lemma, showing that our solutions are consistent. It will be
shown later that the constant expansion is just a transition stage between the
decelerating and the accelerating expansions as the universe evolves toward
its present situation.

Figure 7 describes the Hubble diagram of the above solutions for the
three types of expansion for values of V from 100 to 0.24. The figure describes

Fig. 7. Hubble’s diagram describing the three-phase evolution of the universe according to
Einstein’s general relativity theory. Curves (1)–(5) represent the stages of decelerating expansion
according to r(z) 5 (ct/a) sin az, where a 5 (V 2 1)1/2, V 5 r/rc , with rc a constant, rc 5
3/8pGt2, and c and t are the speed of light and the Hubble time in vacuum (both universal
constants). As the density of matter r decreases, the universe goes over from the lower curves
to the upper ones, but it does not have enough time to close up to a big crunch. The universe
subsequently goes to curve (6) with V 5 1, at which time it has a constant expansion for a
fraction of a second. This then followed by going to the upper curves (7)–(8) with V , 1,
where the universe expands with acceleration according to r(z) 5 (ct/b) sinh bz, where b 5
(1 2 V)1/2. One of these last curves fits the present situation of the universe.
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Table I. The Cosmic Times with Respect to the Big Bang and the Cosmic Temperature
for Each of the Curves in Fig. 7a

Curve no. V Time in units of t Time (sec) Temperature (K)

1 100 3.1 3 1026 1.1 3 1012 1114.0
2 25 9.8 3 1025 3.6 3 1013 279.0
3 10 3.0 3 1024 1.1 3 1014 111.0
4 5 1.2 3 1023 4.4 3 1014 56.0
5 1.5 1.3 3 1022 4.7 3 1015 17.0
6 1 3.0 3 1022 1.1 3 1016 11.0
7 0.5 1.3 3 1021 4.7 3 1016 6.0
8 0.245 1.0 3.6 3 1017 2.7

a The calculations are made using Carmeli’s Lorentz-like transformation that relates physical
quantities at different cosmic times when gravity is extremely weak [13].

the three-phase evolution of the universe. Curves (1)–(5) represent the stages
of decelerating expansion according to Eq. (5.17a). As the density of matter
r decreases, the universe goes over from the lower curves to the upper ones,
but it does not have enough time to close up to a big crunch. The universe
subsequently goes to curve (6) with V 5 1, at which time it has a constant
expansion for a fraction of a second. This then followed by going to the
upper curves (7) and (8) with V , 1, where the universe expands with
acceleration according to Eq. (5.17b). A curve of this kind fits the present
situation of the universe. For curves (1)–(4) in the diagram we use the cutoff
when the curves were at their maximum (or the same could be done by using
the cutoff as determined by R of Fig. 6). In Table I we present the cosmic
times with respect to the big bang and the cosmic radiation temperature for
each of the curves in Fig. 7.

In order to decide which of the three cases is the appropriate one at the
present time, we have to write the solutions (5.17) in the ordinary Hubble
law form v 5 H0r. To this end we change variables from the redshift parameter
z to the velocity v by means of z 5 v/c for v much smaller than c. For
higher velocities this relation is not accurate and one has to use a Lorentz
transformation in order to relate z to v. A simple calculation then shows that,
for receding objects, one has the relations

z 5 [(1 1 v/c)/ (1 2 v/c)]1/2 2 1 (5.18a)

v/c 5 z(z 1 2)/(z2 1 2z 1 2) (5.18b)

We will assume that v ,, c and consequently Eqs. (5.17) have the forms

r(v) 5 (ct/a) sin(av/c) (5.19a)

r(v) 5 (ct/b) sinh(bv/c) (5.19b)
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r(v) 5 tv (5.19c)

Expanding now Eqs. (5.19a) and (5.19b) and keeping the appropriate
terms then yields

r 5 tv(1 2 a2v2/6c2) (5.20a)

for the V . 1 case, and

r 5 tv(1 1 b2v2/6c2) (5.20b)

for V , 1. Using now the expressions for a and b given by Eq. (5.12) in
Eqs. (5.20), both of the latter can be reduced into a single equation

r 5 tv[1 1 (1 2 V)v2/6c2] (5.21)

Inverting now this equation by writing it in the form v 5 H0r, we obtain in
the lowest approximation for H0 the following:

H0 5 h[1 2 (1 2 V)v2/6c2] (5.22)

where h 5 t21. Using v ' r/t, or z 5 v/c, we also obtain

H0 5 h[1 2 (1 2 V)r 2/6c2t2] 5 h[1 2 (1 2 V)z2/6] (5.23)

Consequently, H0 depends on the distance, or equivalently, on the
redshift. As is seen, H0 has meaning only for r → 0 or z → 0, namely when
measured locally, in which case it becomes h.

6. CONCLUDING REMARKS

In recent years observers have argued for values of H0 as low as 50 and
as high as 90 km/sec-Mpc; some of the recent ones show 80 6 17 km/sec-
Mpc [18–26]. There are the so-called “short” and “long” distance scales,
with the higher and the lower values for H0, respectively [27]. Indications
are that the longer the distance of measurement, the smaller the value of H0.
By Eqs. (5.22) and (5.23) this is possible only for the case in which V , 1,
namely when the universe is at an accelerating expansion. Figures 8 and 9
show the Hubble diagrams for the distance–redshift relationship predicted
by theory for the accelerating expanding universe at the present time, and
Fig. 10 and 11 show the experimental results [28,29].

Our estimate for h, based on published data, is h ' 85–90 km/sec-Mpc.
Assuming t21 ' 85 km/sec-Mpc, Eq. (5.23) then gives

H0 5 h[1 2 1.3 3 1024(1 2 V)r 2] (6.1)

where r is in Mpc. A computer best-fit can then fix both h and V .
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Fig. 8. Hubble’s diagram of the universe at the present phase of evolution with accelerating
expansion.

Fig. 9. Hubble’s diagram describing decelerating, constant, and accelerating expansions in a
logarithmic scale.
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Fig. 10. Distance versus redshift diagram showing the deviation from a constant toward an
accelerating expansion. From Riess et al. [28].

Fig. 11. Relative intensity of light and relative distance versus redshift. From Riess et al., [28].
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To summarize, a new general-relativistic theory of cosmology has been
presented in which the dynamical variables are those of Hubble, i.e., distances
and redshifts. The theory describes the universe as having a three-phase
evolution with a decelerating expansion, followed by a constant and an
accelerating expansion, and it predicts that the universe is now in the latter
phase. As the density of matter decreases, while the universe is at the decelerat-
ing phase, it does not have enough time to close up to a big crunch. Rather,
it goes to the constant-expansion phase, and then to the accelerating stage.

As we have seen, the equations obtained for the universe expansion are
elegant and very simple.

The idea to express cosmological theory in terms of directly measurable
quantities, such as distances and redshifts, was partially inspired by Einstein’s
remarks on the theory of thermodynamics in his Autobiographical Notes [30].
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